PID Control Perspective: Techniques and Uses

Main Article Content

Wisam Subhi Al-Dayyeni
Hussam Saleh Mahmood


Under a creative commons Licenses


Abstract

This article covers both conventional and modern methods for PID tuning and its appli-cations in an array of fields. Because of its simple layout, ease of use, and ongoing research into PID tuning, PID control is used in the vast majority of control systems that are now in use. The following is the order of the tackles addressed in the paper: PID tuning occurs utilizing optimization rules that range from traditional to modern. In an age of control systems and biomedical applications, this work aims to examine the literature on PID control. A study of the evolution of conventional PID and its integration with intelligent control has been executed, taking into account a number of ap-plication fields. This document's main goal is to provide readers with an in-depth understanding of PID commands in many application areas.

Downloads

Download data is not yet available.

Article Details

How to Cite
[1]
W. Subhi Al-Dayyeni and H. Saleh Mahmood, “PID Control Perspective: Techniques and Uses”, ejeee, vol. 3, no. 1, pp. 1–8, Jan. 2025, doi: 10.62909/ejeee.2025.001.
Section
Review

References

Kang, C.-G., Origin of Stability Analysis:" On Governors" by JC Maxwell [Historical Perspectives]. IEEE Control Systems Magazine, 2016. 36(5): p. 77-88. DOI: https://doi.org/10.1109/MCS.2016.2584358

Nayak, R. and T. Abdul Munem Abdul Razaq, Examination of the Perspective Regulator of Civil Quad-Rotor UAV Relay on F-PID Controller. Edison Journal for electrical and electronics engineering, 2023. 1: p. 6 - 10. DOI: https://doi.org/10.62909/ejeee.2023.002

Medaglia, J.D., Clarifying cognitive control and the controllable connectome. Wiley Interdisciplinary Reviews: Cognitive Science, 2019. 10(1): p. e1471. DOI: https://doi.org/10.1002/wcs.1471

Bennett, S., The past of PID controllers. IFAC Proceedings Volumes, 2000. 33(4): p. 1-11. DOI: https://doi.org/10.1016/S1474-6670(17)38214-9

Bennett, S., Development of the PID controller. IEEE Control Systems Magazine, 1993. 13(6): p. 58-62. DOI: https://doi.org/10.1109/37.248006

Fong-Chwee, T. and H. Sirisena, Self-tuning PID controllers for dead time processes. IEEE Transactions on industrial electronics, 1988. 35(1): p. 119-125. DOI: https://doi.org/10.1109/41.3074

Rad, A.B., W.L. Lo, and K. Tsang, Self-tuning PID controller using Newton-Raphson search method. IEEE Transactions on Industrial Electronics, 1997. 44(5): p. 717-725. DOI: https://doi.org/10.1109/41.633479

Zhuang, M. and D. Atherton. Automatic tuning of optimum PID controllers. in IEE Proceedings D (Control Theory and Applications). 1993. IET. DOI: https://doi.org/10.1049/ip-d.1993.0030

Porter, B. and A. Jones, Genetic tuning of digital PID controllers. Electronics letters, 1992. 28(9): p. 843-844. DOI: https://doi.org/10.1049/el:19920533

Kristiansson, B. and B. Lennartson, Robust and optimal tuning of PI and PID controllers. IEE Proceedings-Control Theory and Applications, 2002. 149(1): p. 17-25. DOI: https://doi.org/10.1049/ip-cta:20020088

Hsieh, C.-H. and J.-H. Chou, Design of optimal PID controllers for PWM feedback systems with bilinear plants. IEEE transactions on control systems technology, 2007. 15(6): p. 1075-1079. DOI: https://doi.org/10.1109/TCST.2007.908084

Chan, Y.F., M. Moallem, and W. Wang, Design and implementation of modular FPGA-based PID controllers. IEEE transactions on Industrial Electronics, 2007. 54(4): p. 1898-1906. DOI: https://doi.org/10.1109/TIE.2007.898283

Sio, K. and C. Lee, Stability of fuzzy PID controllers. IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans, 1998. 28(4): p. 490-495. DOI: https://doi.org/10.1109/3468.686710

Tzafestas, S. and N.P. Papanikolopoulos, Incremental fuzzy expert PID control. IEEE Transactions on Industrial Electronics, 1990. 37(5): p. 365-371. DOI: https://doi.org/10.1109/41.103431

SLS0SS, S.S.S.S.S.S. Optimal setting for discrete PID controllers. in IEE PROCEEDINGS-D. 1992.

Tang, K.-S., et al., An optimal fuzzy PID controller. IEEE transactions on industrial electronics, 2001. 48(4): p. 757-765. DOI: https://doi.org/10.1109/41.937407

Kaya, Y. and S. Yamamura, A self-adaptive system with a variable-parameter PID controller. Transactions of the American Institute of Electrical Engineers, Part II: Applications and Industry, 1962. 80(6): p. 378-386. DOI: https://doi.org/10.1109/TAI.1962.6371846

Zhenbin, W., et al., Digital implementation of fractional order PID controller and its application. Journal of Systems Engineering and Electronics, 2005. 16(1): p. 116-122.

Viola, J. and L. Angel, Factorial design for robustness evaluation of fractional PID controllers. IEEE Latin America Transactions, 2015. 13(5): p. 1286-1293. DOI: https://doi.org/10.1109/TLA.2015.7111981

Åström, K.J. and T. Hägglund, The future of PID control. Control engineering practice, 2001. 9(11): p. 1163-1175. DOI: https://doi.org/10.1016/S0967-0661(01)00062-4

Díaz-Rodríguez, I.D., S. Han, and S.P. Bhattacharyya, Analytical design of PID controllers. 2019: Springer. DOI: https://doi.org/10.1007/978-3-030-18228-1

Ziegler, J.G. and N.B. Nichols, Optimum settings for automatic controllers. Transactions of the American society of mechanical engineers, 1942. 64(8): p. 759-765. DOI: https://doi.org/10.1115/1.4019264

Åström, K.J. and T. Hägglund, Automatic tuning of simple regulators. IFAC Proceedings volumes, 1984. 17(2): p. 1867-1872. DOI: https://doi.org/10.1016/S1474-6670(17)61248-5

Ho, W.K., et al., Performance and gain and phase margins of well-known PID tuning formulas. IEEE Transactions on Control Systems Technology, 1996. 4(4): p. 473-477. DOI: https://doi.org/10.1109/87.508897

Koivo, H. and J. Tanttu, Tuning of PID conrollers: Survey of SISO and MIMO techniques, in Intelligent tuning and adaptive control. 1991, Elsevier. p. 75-80. DOI: https://doi.org/10.1016/B978-0-08-040935-1.50016-8

Ruano, A., P. Fleming, and D. Jones. Connectionist approach to PID autotuning. in IEE Proceedings D (Control Theory and Applications). 1992. IET. DOI: https://doi.org/10.1049/ip-d.1992.0037

Aguirre, L., PID tuning based on model matching. Electronics Letters, 1992. 28(25): p. 2269-2271. DOI: https://doi.org/10.1049/el:19921460

Zhuang, M. and D. Atherton, PID controller design for a TITO system. IEE Proceedings-Control theory and applications, 1994. 141(2): p. 111-120. DOI: https://doi.org/10.1049/ip-cta:19949977

Poulin, E. and A. Pomerleau, PID tuning for integrating and unstable processes. IEE Proceedings-Control theory and applications, 1996. 143(5): p. 429-435. DOI: https://doi.org/10.1049/ip-cta:19960442

Visioli, A., Tuning of PID controllers with fuzzy logic. IEE Proceedings-Control Theory and Applications, 2001. 148(1): p. 1-8. DOI: https://doi.org/10.1049/ip-cta:20010232

Cominos, P. and N. Munro, PID controllers: recent tuning methods and design to specification. IEE Proceedings-Control Theory and Applications, 2002. 149(1): p. 46-53. DOI: https://doi.org/10.1049/ip-cta:20020103

Huang, H.-P., M.-L. Roan, and J.-C. Jeng, On-line adaptive tuning for PID controllers. IEE Proceedings-Control Theory and Applications, 2002. 149(1): p. 60-67. DOI: https://doi.org/10.1049/ip-cta:20020099

Stafford, E., Design aid for approximate PD and PID on/off controllers. Electronics Letters, 1977. 13(6): p. 163-164. DOI: https://doi.org/10.1049/el:19770116

Lennartson, B. and B. Kristiansson, Evaluation and tuning of robust PID controllers. IET control theory & applications, 2009. 3(3): p. 294-302. DOI: https://doi.org/10.1049/iet-cta:20060450

Jacobs, O., P. Hewkin, and C. While. Online computer control of pH in an industrial process. in IEE Proceedings D (Control Theory and Applications). 1980. IET. DOI: https://doi.org/10.1049/ip-d.1980.0025

Yamamoto, T. and S. Shah, Design and experimental evaluation of a multivariable self-tuning PID controller. IEE Proceedings-Control Theory and Applications, 2004. 151(5): p. 645-652. DOI: https://doi.org/10.1049/ip-cta:20040853

Gawthrop, P., P. Nomikos, and L. Smith. Adaptive temperature control of industrial processes: a comparative study. in IEE Proceedings D (Control Theory and Applications). 1990. IET. DOI: https://doi.org/10.1049/ip-d.1990.0018

Daley, S. and G. Liu, Optimal PID tuning using direst search algorithms. Computing & Control Engineering Journal, 1999. 10(2): p. 51-56. DOI: https://doi.org/10.1049/cce:19990203

Somefun, O.A., K. Akingbade, and F. Dahunsi, The dilemma of PID tuning. Annual Reviews in Control, 2021. 52: p. 65-74. DOI: https://doi.org/10.1016/j.arcontrol.2021.05.002

Dinca, M.P., M. Gheorghe, and P. Galvin, Design of a PID controller for a PCR micro reactor. IEEE Transactions on Education, 2008. 52(1): p. 116-125. DOI: https://doi.org/10.1109/TE.2008.919811

Papadopoulos, K.G., E.N. Papastefanaki, and N.I. Margaris, Explicit analytical PID tuning rules for the design of type-III control loops. IEEE Transactions on Industrial Electronics, 2012. 60(10): p. 4650-4664. DOI: https://doi.org/10.1109/TIE.2012.2217723

Eslami, M., M.R. Shayesteh, and M. Pourahmadi, Optimal design of PID-based low-pass filter for gas turbine using intelligent method. IEEE Access, 2018. 6: p. 15335-15345. DOI: https://doi.org/10.1109/ACCESS.2018.2808476

Razvarz, S., et al., Flow control of fluid in pipelines using PID controller. IEEE Access, 2019. 7: p. 25673-25680. DOI: https://doi.org/10.1109/ACCESS.2019.2897992

Garran, P.T. and G. Garcia, Design of an optimal PID controller for a coupled tanks system employing ADRC. IEEE Latin America Transactions, 2017. 15(2): p. 189-196. DOI: https://doi.org/10.1109/TLA.2017.7854611

Bestaoui, Y. Decentralised PD and PID robotic regulators. in IEE Proceedings D (Control Theory and Applications). 1989. IET. DOI: https://doi.org/10.1049/ip-d.1989.0020

Zhang, H., G. Trott, and R. Paul, Minimum delay PID control of interpolated joint trajectories of robot manipulators. IEEE Transactions on Industrial Electronics, 1990. 37(5): p. 358-364. DOI: https://doi.org/10.1109/41.103430

Rocco, P., Stability of PID control for industrial robot arms. IEEE transactions on robotics and automation, 1996. 12(4): p. 606-614. DOI: https://doi.org/10.1109/70.508444

Sun, D., et al., Global stability of a saturated nonlinear PID controller for robot manipulators. IEEE Transactions on Control Systems Technology, 2009. 17(4): p. 892-899. DOI: https://doi.org/10.1109/TCST.2008.2011748

Feng, W., J. O'reilly, and D. Ballance, MIMO nonlinear PID predictive controller. IEE Proceedings-Control Theory and Applications, 2002. 149(3): p. 203-208. DOI: https://doi.org/10.1049/ip-cta:20020339

Parra-Vega, V., et al., Dynamic sliding PID control for tracking of robot manipulators: Theory and experiments. IEEE Transactions on Robotics and Automation, 2003. 19(6): p. 967-976. DOI: https://doi.org/10.1109/TRA.2003.819600

Jafarov, E.M., M.N.A. Parlakçi, and Y. Istefanopulos, A new variable structure PID-controller design for robot manipulators. IEEE Transactions on Control Systems Technology, 2004. 13(1): p. 122-130. DOI: https://doi.org/10.1109/TCST.2004.838558

Li, W., et al., Tracking control of a manipulator under uncertainty by FUZZY P+ ID controller. Fuzzy Sets and Systems, 2001. 122(1): p. 125-137. DOI: https://doi.org/10.1016/S0165-0114(00)00019-1

Kazemian, H.B., The SOF-PID controller for the control of a MIMO robot arm. IEEE Transactions on Fuzzy Systems, 2002. 10(4): p. 523-532. DOI: https://doi.org/10.1109/TFUZZ.2002.800658

Park, J. and W.K. Chung, Analytic nonlinear H/sub/spl infin//inverse-optimal control for Euler-Lagrange system. IEEE Transactions on Robotics and Automation, 2000. 16(6): p. 847-854. DOI: https://doi.org/10.1109/70.897796

Park, J. and W. Chung, Design of a robust H∞ PID control for industrial manipulators. J. Dyn. Sys., Meas., Control, 2000. 122(4): p. 803-812. DOI: https://doi.org/10.1115/1.1310367

Eriksson, E. and J. Wikander. Robust PID design of flexible manipulators through pole assignment. in 7th International Workshop on Advanced Motion Control. Proceedings (Cat. No. 02TH8623). 2002. IEEE.

Alavarez-Ramirezi, J., I. Cervantes, and R. Bautista. Robust PID control for robots manipulators with elastic joints. in Proceedings of the 2001 IEEE International Conference on Control Applications (CCA'01)(Cat. No. 01CH37204). 2001. IEEE.

Kapat, S. and P.T. Krein, Formulation of PID control for DC–DC converters based on capacitor current: A geometric context. IEEE Transactions on Power Electronics, 2011. 27(3): p. 1424-1432. DOI: https://doi.org/10.1109/TPEL.2011.2164423

Seo, S.-W. and H.H. Choi, Digital implementation of fractional order PID-type controller for boost DC–DC converter. IEEE Access, 2019. 7: p. 142652-142662. DOI: https://doi.org/10.1109/ACCESS.2019.2945065

Alhafadhi, M.H., M.J. Ahmed, and H.H. Ibrahim, Load Frequency Control for Hybrid Power System by Modified PSO-PID Controller. Edison Journal for electrical and electronics engineering, 2024. 2(1): p. 35-41. DOI: https://doi.org/10.62909/ejeee.2024.006

Behera, A., et al., A novel cascaded PID controller for automatic generation control analysis with renewable sources. IEEE/CAA Journal of Automatica Sinica, 2019. 6(6): p. 1438-1451. DOI: https://doi.org/10.1109/JAS.2019.1911666

Chee, F., et al., Expert PID control system for blood glucose control in critically ill patients. IEEE Transactions on Information Technology in Biomedicine, 2003. 7(4): p. 419-425. DOI: https://doi.org/10.1109/TITB.2003.821326

Marchetti, G., et al., An improved PID switching control strategy for type 1 diabetes. ieee transactions on biomedical engineering, 2008. 55(3): p. 857-865. DOI: https://doi.org/10.1109/TBME.2008.915665

O'Hara, D.A., et al., The use of a PID controller to model vecuronium pharmacokinetics and pharmacodynamics during liver transplantation. IEEE transactions on biomedical engineering, 1997. 44(7): p. 610-619. DOI: https://doi.org/10.1109/10.594902

Van Heusden, K., et al., Design and clinical evaluation of robust PID control of propofol anesthesia in children. IEEE Transactions on Control Systems Technology, 2013. 22(2): p. 491-501. DOI: https://doi.org/10.1109/TCST.2013.2260543

Wai, R.-J., J.-D. Lee, and K.-L. Chuang, Real-time PID control strategy for maglev transportation system via particle swarm optimization. IEEE Transactions on Industrial Electronics, 2010. 58(2): p. 629-646. DOI: https://doi.org/10.1109/TIE.2010.2046004

Chen, Q., et al., Decentralized PID control design for magnetic levitation systems using extremum seeking. IEEE Access, 2017. 6: p. 3059-3067. DOI: https://doi.org/10.1109/ACCESS.2017.2787052

Duan, X.-G., H. Deng, and H.-X. Li, A saturation-based tuning method for fuzzy PID controller. IEEE Transactions on Industrial Electronics, 2012. 60(11): p. 5177-5185. DOI: https://doi.org/10.1109/TIE.2012.2222858

Meng, F., S. Liu, and K. Liu, Design of an optimal fractional order PID for constant tension control system. IEEE Access, 2020. 8: p. 58933-58939. DOI: https://doi.org/10.1109/ACCESS.2020.2983059