EJEEE 2023, Vol.1 16 of 16
References
1. Bahramian, M. and K. Yetilmezsoy, Life cycle assessment of the building industry: An overview of two decades of
research (1995â2018). Energy and Buildings, 2020. 219: p. 109917.
2. Sijm, J., K. Neuhoff, and Y. Chen, CO2 cost pass-through and windfall profits in the power sector. Climate policy,
2006. 6(1): p. 49-72.
3. Sefrioui, M. and J. PĂ©riaux. A hierarchical genetic algorithm using multiple models for optimization. in International
Conference on Parallel Problem Solving From Nature. 2000. Springer.
4. Sivanandam, S., et al., Genetic algorithm optimization problems. Introduction to genetic algorithms, 2008: p. 165-
209.
5. Wang, D., D. Tan, and L. Liu, Particle swarm optimization algorithm: an overview. Soft computing, 2018. 22: p.
387-408.
6. Gad, A.G., Particle swarm optimization algorithm and its applications: a systematic review. Archives of
computational methods in engineering, 2022. 29(5): p. 2531-2561.
7. Schutte, J.F., et al., Parallel global optimization with the particle swarm algorithm. International journal for
numerical methods in engineering, 2004. 61(13): p. 2296-2315.
8. Abazari, A., et al., Wind turbine participation in microâgrid frequency control through selfâtuning, adaptive fuzzy
droop in deâloaded area. IET Smart Grid, 2019. 2(2): p. 301-308.
9. Bazmi, A.A. and G. Zahedi, Sustainable energy systems: Role of optimization modeling techniques in power
generation and supplyâA review. Renewable and sustainable energy reviews, 2011. 15(8): p. 3480-3500.
10. Kaldellis, J.K., Supporting the clean electrification for remote islands: The case of the greek tilos island. Energies, 2021.
14(5): p. 1336.
11. Duchaud, J.-L., et al., Multi-Objective Particle Swarm optimal sizing of a renewable hybrid power plant with storage.
Renewable Energy, 2019. 131: p. 1156-1167.
12. Yaramasu, V., et al., High-power wind energy conversion systems: State-of-the-art and emerging technologies.
Proceedings of the IEEE, 2015. 103(5): p. 740-788.
13. Geidl, M. and G. Andersson, Optimal power flow of multiple energy carriers. IEEE Transactions on power
systems, 2007. 22(1): p. 145-155.
14. Chaudhari, K., et al., Hybrid optimization for economic deployment of ESS in PV-integrated EV charging stations.
IEEE Transactions on Industrial Informatics, 2017. 14(1): p. 106-116.
15. Van der Zwaan, B. and A. Rabl, The learning potential of photovoltaics: implications for energy policy. Energy
policy, 2004. 32(13): p. 1545-1554.
16. Moser, D., et al., Identification of technical risks in the photovoltaic value chain and quantification of the economic
impact. Progress in Photovoltaics: Research and Applications, 2017. 25(7): p. 592-604.
17. Hacke, P., et al., A status review of photovoltaic power conversion equipment reliability, safety, and quality assurance
protocols. Renewable and Sustainable Energy Reviews, 2018. 82: p. 1097-1112.
18. HernĂĄndez-Callejo, L., S. Gallardo-Saavedra, and V. Alonso-GĂłmez, A review of photovoltaic systems: Design,
operation and maintenance. Solar Energy, 2019. 188: p. 426-440.
19. Jossen, A., Fundamentals of battery dynamics. Journal of power sources, 2006. 154(2): p. 530-538.
20. Campagna, N., et al., Battery models for battery powered applications: A comparative study. Energies, 2020. 13(16):
p. 4085.
21. Deb, K. and N. Padhye, Enhancing performance of particle swarm optimization through an algorithmic link with
genetic algorithms. Computational Optimization and Applications, 2014. 57: p. 761-794.