
EJEEE  
 

 

 
https://doi.org/10.xxxx/xxxxx Edison Journal for Electrical and Electronics Engineering 

Article 1 

Tilos Island's ideal microgrid size for wind, solar, and batteries 2 

Faraqid Q. Mohammed 1 and Yousif Ali Latif Al-Zuhairy 2, * 3 

1 National School of Electronics and Telecoms, University of Sfax, Tunisia; faraqid@enis.tn 4 
2 Dep. of computer and communication engineering, Islamic University of Lebanon, Lebanon; 5 

yl76354@net.iul.edu.lb 6 
* Correspondence: Tel.: +961-3866468 7 

Abstract: This article describes a power plant that is versatile regarding its modeling and associ- 8 

ated with a Multiple Objectives Particle Swarm optimization in order to determine the optimal size 9 

of each component of the power plant. The simulation is appropriate for a variety of power sources, 10 

storage devices and loads. The method is utilized on a Wind Turbine/ Photovoltaic Device/ Battery 11 

System setup located in Tilos, Greece. The optimization is intended to reduce the expense of the 12 

system and the energy derived from alternative sources that are not renewable. The results produce 13 

a Pareto front that represents the expense of the equipment and the degree of autonomy of the mi- 14 

cro-grid. The most effective solution to a specific expense associated with energy importation is 15 

demonstrated as an example. 16 
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 18 

1. Introduction 19 

In certain instances, the error value rose to 59.5 percent (depending on the weather 20 

and renovation scenarios combination considered) [1]. The average increase in slope co- 21 

efficient over the course of a decade was between 3.8 and 8 percent, which is consistent 22 

with a drop in the number of heating hours throughout the heating season from 22 to 139 23 

hours (depending on the combination of weather and renovation scenarios considered). 24 

Conversely, function intercept rose by 7.8–12.7% every ten years (depending on the cou- 25 

pled scenarios). The proposed values could be used to adjust the function parameters for 26 

the scenarios taken into account and raise the heat demand estimator's accuracy. 27 

Such a power plant is costly and may not turn a profit if it is not scaled correctly [2]. 28 

Numerous methods, including the Genetic Algorithm[3, 4], and the Particle Swarm Algo- 29 

rithm [5, 6], have been used to study this topic in the literature [7]. All of these references, 30 

nevertheless, are concentrated on certain power plant configurations. This paper's meth- 31 

odology employs a 12-variable modeling that may be applied to a variety of micro-grid 32 

layouts [8]. The Multi Objective Particle Swarm Optimization (MOPSO) technique is uti- 33 

lized to reduce the dependence on external energy sources and system costs [9]. Following 34 

optimization, this external energy cost is utilized to determine the optimal plant configu- 35 

ration for a specific location and consumption profile. On the Greek island of Tilos, the 36 

algorithm is used to size a wind and solar power plant connected to a battery bank. The 37 

flexible plant modeling, its configuration for the case under study, its power sources, the 38 

energy conversion components, the energy management plan, and the economic assump- 39 

tions are all covered in the following section. The optimization issue and the MOPSO al- 40 

gorithm are briefly presented in Section 3. Lastly, Section 4 presents the optimization out- 41 

comes. 42 

2. Materials and Methods 43 

2.1  Flexible plant modeling 44 
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This work uses a modular approach to modeling. One or more Renewable Energy 45 

Systems (RES) and one External Storage System can be combined to create a broad variety 46 

of plant designs that it can emulate (ESS). The simulated plants must always supply a load 47 

or have a tolerance for a loss of power supply. If the RES power is insufficient, they can 48 

be connected to the main grid or a controlled source, such as a diesel generator, and they 49 

may or may not export the excess energy generated. Nine Generic Conversion Systems 50 

(GCS) provide this flexibility; they can be turned on or off based on the configuration that 51 

is depicted. The algorithm configuration for the plant used as an example in this paper is 52 

shown in Figure 1. It consists of a bank of sodium nickel chloride batteries, a photovoltaic 53 

array, and a wind turbine. The facility has to provide electricity to about 800 people and 54 

is situated at Tilos, Greece [10]. If the energy from the RES is insufficient to supply the 55 

demand, electricity can be imported from the nearby island of Kos via an underwater ca- 56 

ble or generated using a diesel generator. 57 

 58 

 59 
Figure 1. Procedure arrangement for the plant design 60 

 61 

2.2  Renewable Energy Systems 62 

The power output of the PV panels and wind turbine is calculated using in-situ me- 63 

teorological weather data. Prior to optimization, calculations are performed using a uni- 64 

tary installed power, and the result is multiplied by the installed power in reality. The 65 

plant can also import power using a diesel generator or an underwater cable in addition 66 

to these RES [11]. 67 

2.3  Power management 68 

To identify the optimal solution, the optimization algorithm requires values that rep- 69 

resent the plant performances. A specific plant's behavior is simulated using weather and 70 

consumption data over an extended period of time in order to assess its performance. In 71 

order to prevent seasonal phenomena and ensure that the timeframe is reflective of the 72 

location, it should be at least one year. It is imperative that the power management method 73 

be sufficiently simple to execute rapidly, given that the optimizer will simulate many con- 74 

figurations. In our instance, WT control converts the power generated by the wind turbine 75 

to the voltage and frequency of the grid. PV inverters are used in a similar manner to 76 

transform the power generated by PV panels [12]. The load is supplied by this electricity. 77 

The remaining power is sent to Charge so that it can be converted to DC and kept in the 78 

battery bank if the RES power is higher than the consumption. If it is feasible, energy is 79 

exported to the main grid when the batteries are full. The batteries are depleted and con- 80 

verted to AC through discharge if the RES are insufficient to power the load. Should that 81 

prove insufficient, the residual energy can be obtained by importing it from either the 82 

diesel generator or the grid. Ultimately, there is a Loss of Power Supply, and the plant is 83 

penalized by the optimizer if the import power limitation prevents it from meeting the 84 

load [13]. 85 



EJEEE 2023, Vol.1 13 of 16 
 

 

To prevent the algorithm from returning a costly solution with almost no energy in- 86 

put, an economic requirement must also be lowered [14]. 87 

2.4  Economics  88 

A power plant's cost estimation is a challenging task because there are many eco- 89 

nomic criteria involved, and they can vary greatly. For instance, the price of an installed 90 

PV panel dropped by 83% in just seven years [15]. They are also susceptible to sudden 91 

changes and rely on the location, labor costs, and supplier. The PV panels and inverters 92 

values are taken from [16] and [17], the wind turbine values are from [18], and the battery 93 

values are from [19] and [20]. The prices utilized in this paper are merely illustrative, ac- 94 

cording to the authors, who also emphasize that the paper concentrates on modeling and 95 

optimization techniques. The installation cost of each component varies based on its size. 96 

The equipment lifespan (Year) and the study duration (Year), which is set at 25 years, are 97 

used to determine how many replacements (Year) are needed. After then, the installation 98 

cost multiplied by the actualization rate (R), which reflects the yearly cost volatility, equals 99 

the purchase cost. An annualized cost is calculated by dividing the purchase price by the 100 

length of the study. 101 
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It is estimated that the annual maintenance cost will be a small percentage of the 103 

installation cost. Finally, the yearly cost of a certain piece of equipment is: 104 

  105 

1A BA MC C C= +  (2) 106 

The yearly cost of each piece of equipment is then added up to determine the Annu- 107 

alized Cost of System (ACS). The second optimization target to be minimized is the ACS. 108 

The optimization outcomes will give rise to a Pareto front since it clashes with the im- 109 

ported energy. 110 

 111 

2.5  Particle Swarm Optimization 112 

The goal of the optimization issue is to reduce the imported energy and the Annual- 113 

ized Cost of System (ACS) while ensuring that the Probability of Loss of Power Supply 114 

(Positive). It can be expressed like this: 115 

 
*

*

arg(min) ( )*

( ) 0
 x  and X  

x ACS x

LPSP x
Find such as

=

=
  (3) 116 

Where V is the vector that defines the study domain, 𝑋𝑋 the wind turbine nominal 117 

power, PV array peak power, PV inverter rated power, and battery bank capacity. Multi- 118 

Objective Particle Swarm Optimization (MOPSO) is used to address this four-parameter 119 

optimization issue [21]. Large-scale issues can be resolved using this stochastic approach 120 

that lacks gradients. It functions by shifting the particles in the research domain, which 121 

stand in for different plant arrangements. The particle velocity is determined by the plant 122 

performances, namely 𝐴𝐴𝐴𝐴𝐴 and 𝐸𝐸𝐼𝐼𝐴𝐴, in order for them to approach the best possible 123 

solution, if any. A list of nondominated plants in the form of a Pareto front is produced 124 

by the method. 125 

3. Results 126 

In Figure 2, the dark blue line represents the algorithm's solutions. With its 𝐴𝐴𝐴𝐴𝐴𝐴 127 

and the percentage of imported energy, each point in the graph represents an ideal plant: 128 

𝐸𝐃𝐼𝐼𝐼𝐼 𝐸𝐸𝐿𝐿𝐎𝐶 ⁄. The installed arrangement is indicated by the blue circle, while the bat- 129 

tery bank capacity, PV array peak power (yellow), and wind turbine nominal power 130 

(green) are represented by the thinner lines (light blue). These findings suggest that wind 131 

power should be the main energy source. The plant depends entirely on wind and imports 132 

for energy over twenty-five percent; neither solar power nor energy storage is used. It 133 

becomes profitable to increase the size of the PV array below this point. Nevertheless, this 134 
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electricity should be connected to a larger storage unit because it is unavailable at night. 135 

This results in a sharp rise in price and pricey autonomous gains. 136 

 137 
Figure 2. Procedure optimization outcome for a Tilos 138 

 139 

The cost of importing energy and the cost of producing energy with the diesel gen- 140 

erator now determine the best course of action. These expenses ought to be handled inde- 141 

pendently and might change every hour. They are assumed to be constant and equal for 142 

the sake of example so that the data can be presented in a three-dimensional graph. Let C 143 

be the cost of purchasing energy (i.e. the importation and the diesel cost). The ratio of 144 

annual expenditures to energy consumption for each plant is known as the production 145 

cost 𝐶𝐶𝑝𝑝. 146 
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ACS C E
C

E

+
=  (4) 147 

The plant in the Pareto front that minimizes 𝐶𝐶𝑝𝑝 is plotted in red in Figure 3a for a 148 

given 𝐶𝐶𝐵𝐵. Ultimately, assuming 𝐶𝐶𝐵𝐵 specifies the ACS, the imported energy, and the 149 

production cost and helps determine the ideal plant component size. These findings are 150 

summarized on the same figure in Figure 3b. With instance, the ideal plant for VL = 220 151 

€/MW.h consists of a 1 MW wind turbine, a 200 kWp PV array with connected inverters 152 

that provide 350kW of nominal electricity, and a 400 kW.h power bank. This plant has a 153 

production cost of 87 €/MW.h. and an energy autonomy of 80%. In Figure 2, this setup is 154 

indicated by a red circle. For somewhat better performances than its real equivalent, it 155 

needs less storage and more wind power. 156 

 157 
Figure 3a production cost depending on    3bAnnualized Cost of System 158 

the optimal solution Figure  159 

4. Conclusions 160 
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This work presents an algorithm that can optimize the component sizes of a hybrid 161 

renewable power plant that is connected to a storage system. The plant model is flexible 162 

enough to accommodate different setups and accounts for the equipment's nonlinear cost 163 

as well as power-dependent efficiency. Utilizing a Multi Objective Particle Swarm tech- 164 

nique, the optimization issue is resolved.  165 

On the Greek island of Tilos, the algorithm has been deployed to a wind turbine, 166 

photovoltaic array, and battery bank power plant. The goals are to decrease the annual- 167 

ized cost of the system and the imported energy in order to avoid assuming an energy 168 

importation cost prior to the optimization. The best option for various importation costs 169 

can be calculated after the Pareto front is found. The ACS, the imported energy, the cost 170 

of producing energy, and the size of each plant component (WT size, PV installed power, 171 

inverter nominal power, and storage capacity) make up the solution. 172 

The optimization problem has been effectively resolved by this algorithm. It can be 173 

enhanced by putting into practice a more effective energy management plan [22], having 174 

the option to deploy numerous storage units, having more accurate power source models, 175 

or having storage eventually age. To provide more practical answers, the economic factors 176 

for the component purchasing and maintenance expenses also need to be improved. 177 
 178 
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