
EJEEE

https://doi.org/10.xxxx/xxxxx Edison Journal for Electrical and Electronics Engineering

Article 1

Software Testing Based on Research: A Road Map 2

Omar Salim Abdulla 1, *, , Bahaa Abdul Qader Thabit 2, and Ghazwan Ahmed Al-Zaidi2, 3

1 Bilad Al-Rafidain university college, Diyala 32001, Iraq; dr.omersalim@bauc14.edu.iq 4
2 Institute of Graduate studies and Research, Alexandria university, Egypt; igsr.BahaaThabet@alexu.edu.eg 5
3 Faculty of Information Science & Technology, UKM, Malaysia; P105672@siswa.ukm.edu.my 6
* Correspondence: Tel.: +964-7740219350 7

Abstract: This paper serves as a guide for both researchers and students who are new to the research 8

area of Search-Based Package Testing. The application of metaheuristic explore methods in this con- 9

text specifically pertains to utilizing these algorithms for generating test data. In the realm of soft- 10

ware engineering research, software testing emerges as a robust and fertile ground for exploration. 11

The integration of AI methods into software program testing is an evolving research direction. Of- 12

ten, newcomers to this field face challenges due to limited knowledge about the interaction between 13

software testing and artificial intelligence. This paper aims to provide a roadmap for these new 14

researchers or students in the field. 15

Keywords: SBSE; AI; Software Testing 16

 17

1. Introduction 18

Relatively, Search-based software engineering SBSE is one of the new exploration 19

projects filed. Where, the first publication used this term published by Mark Harman in 20

2001 in [1]. SBSE terms consist of two parts as the prefix “S” represent the word “Search” 21

which refers to the Artificial Intelligence (AI) and the suffix “BSE” refers to the software 22

engineering part. Recently, AI used widely in most of the software engineering lifecycle 23

as an automation process such as in the software testing which is our concern in this pa- 24

per. 25

The application of AI methods in computer software challenging involves utilizing 26

search algorithms to generate and optimize test data for testing purposes. Just as SBSE 27

serves as a prefix for search-based software engineering, SBST denotes the use of search 28

algorithms in software testing. SBST can be broadly categorized into two main directions. 29

First, is the white-box software testing and second, the black-box software testing. In 30

white-box and some researchers address it as structural testing, the tester tests the entire 31

of the software component one by one as the conditions statement or the loop statement. 32

Unlike the structural testing, the black box testing or the functional testing, tester don’t 33

care about the software components. The tester in functional testing care about the soft- 34

ware functions only by giving an input and examine the output regardless how this out- 35

put generated. 36

This paper represents a roadmap for all the new searchers or student in the SBST 37

research field. The remaining sections of the paper are structured as trails, an introduction 38

about the term Search Based Software Engineering “SBSE”, is represented in section 1. 39

The most well-known software testing approaches in section 2, Search-Based Software 40

Testing SBST discussed in section 3 and evolutionary examination data creation tech- 41

niques in section 4. 42

2. Materials and Methods 43

Citation: To be added by editorial

staff during production.

Academic Editor: Dr. Mohd Hasan

Alwan

Received: 24/10/2023

Revised: 27/11/2023

Accepted: 5/12/2023

Published: 10/12/2023

Copyright: © 2023 by the authors.

Submitted for possible open access

publication under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/license

s/by/4.0/).

http://ejeee.krc-group.org/index.php/ejeee
http://ejeee.krc-group.org/index.php/ejeee
https://sss-publisher.com/sssp/
mailto:dr.omersalim@bauc14.edu.iq
mailto:igsr.BahaaThabet@alexu.edu.eg
https://orcid.org/0000-0003-4766-8422
https://orcid.org/0009-0006-2871-6889
https://orcid.org/0009-0000-8409-6764

EJEEE 2023, Vol.1 25 of 31

2.1 SEARCH BASED SOFTWARE ENGINEERING (SBSE) 44

The term of Search Based Software Engineering SBSE was first time initiated by Mark 45

Harman [2]. Where the word “search” refers to use the metaheuristic search techniques. 46

The term SBSE in generally mean reformulating the problem of software engineering as 47

search problem (optimization problem). Software engineering generally like other filed 48

were, the software engineer looking for near optimal solution for the software engineering 49

problem with acceptable forbearance. Hence, the problem of software engineering can be 50

perfect application for metaheuristic search algorithm in various software engineering 51

problem. Search based software engineering SBSE addressed various types of engineering 52

problem according to publication of which represent comprehensive and rich content 53

about SBSE, there is concretion about different categories and application of software en- 54

gineering problem tackled as search as an optimization problem. It has been highlighted 55

these application examples as [2]: 56

- Testing and debugging: examples in [3, 4]. 57

- Requirements engineering: [5].. 58

- Project planning and cost estimation: [1, 6]. 59

- Automated maintenance: [7]. 60

- Service oriented software engineering: [8] 61

In addition, there are extra software engineering applications used as case studies for 62

search-based optimization techniques can be seen in [9, 10]. It has been explained the 63

growth in publication over time in the in search-based software engineering [11]. 64

Recent approaches tends to achieve higher levels in terms of Search based software 65

testing where, some recent publication discussed testing the software in terms of many 66

testing objectives in addition to code coverage level. It has been stated a research question 67

“However, is high code coverage alone sufficient to detect bugs effectively?”. They intro- 68

duced a predictive many-objective sorting algorithm (PreMOSA) that combines defect 69

prediction information with coverage details to determine optimal areas for enhancing 70

test coverage within the class under test (CUT).. [12] 71

Another tends in the SBST field is the use of automated and manual fitness function 72

design in order to guide the search exploration toward the software failure. It has been 73

proposed an approach based on automated and manual fitness function design for SBST 74

technique named as ATheNA testing framework. According to the experimental test, they 75

stated that ATheNA-S generated more failure-revealing test cases than two baseline SBST 76

frameworks [13]. 77

Different software testing techniques reported in the literature in the recent years. In 78

this research article, we refers the reader to the most important articles from our overview 79

as [14-16]. 80

Research manuscripts reporting large datasets that are deposited in a publicly avail- 81

able database should specify where the data have been deposited and provide the relevant 82

accession numbers. If the accession numbers have not yet been obtained at the time of 83

submission, please state that they will be provided during review. They must be provided 84

prior to publication. 85

Interventionary studies involving animals or humans, and other studies that require 86

ethical approval, must list the authority that provided approval and the corresponding 87

ethical approval code. 88

 89

2.2 SOFTWARE TESTING APPROACHES 90

In software testing, there is some points have to be token in consideration, especially 91

what associated with the input test cases. Where, the huge number of the possible test 92

cases can be an input to test the software. That led the tester to decide how to test the 93

software in order to reduce the testing cost by find minimum number of test cases satisfy 94

the test goals. For this purpose, there is common methodologies applied in software test- 95

ing. In this paper, we will address two of them as first is white box testing and the second 96

as black box testing. 97

EJEEE 2023, Vol.1 26 of 31

3.2.1 White (structural) Box Testing 98

In this approach, testing process is deriving test inputs from the internal structure of 99

the software under test [17]. This approach treating the software as group of structure 100

such as branches, paths and statement. Every structure considered as coverage criteria. 101

Where, coverage criteria such as, branch coverage, statement coverage or any others es- 102

tablished as testing goal to be satisfied. This approach concern on test a predetermined 103

coverage criteria (branch, as example) through executing this structure wherever found. 104

i. Control flow graph (CFG) 105

Control flow graph is another representation for software where, it is describing the 106

software as set of Nods (N) connected by Edges (E). Control flow graph for program P 107

starts by unique starting node s and ends by another unique node as exit node x. Each 108

node n ∈ N represent a statement in the program P. Also, each e = (ni , nj) ∈ E represent 109

transfer between the node ni to nj . Branching nods represent the statements have deci- 110

sion in the program P such as (if statement, while statement...). Simple example for source 111

code and its control flow graph shown in figure 1. 112

 113

 114
 115

Figure 1. CFG example 116

ii. Coverage criteria 117

The idea behind identifying the coverage criteria in structural test data generation is 118

to convert these criterions as an objective function. Mainly, the coverage criterions are 119

statement, branch, and condition [18]. For example, if the tests goals are the branch cov- 120

erage, the objective function will design to generate test data can cover as much as possible 121

branches in the software under test. 122

 123

2.3 Black (functional) Box Testing 124

In this approach of testing tester have no knowledge about the inner framework of 125

the software being examined. Tester have two features can employ in testing, the test in- 126

puts and the output. Input is the sequence of test case, which can be valid, or not. The only 127

knowledge about the validity of the test input can verified from the observation of the 128

tester for the output result. Output of testing process (tester have the expected out form 129

the specification of the software under test) will reflect the result of testing as shown in 130

figure 2 [19]. 131

EJEEE 2023, Vol.1 27 of 31

 132

Figure 2. Black box testing scheme 133

 134

4. SEARCH-BASED SOFTWARE TESTING SBST 135

Software testing and particularly test data generation is complex and undecidable 136

problem especially when the software is large and complicated. Therefore, the automation 137

of test generation is required. Search-Based Software Testing SBST is the term of using 138

metaheuristic search algorithm in generating set of data as software test inputs. It is only 139

an example of Search-Bases Software Engineering SBSE. The relation between the artificial 140

intelligence search algorithms with the software testing shown in figure 3. 141

 142

 143
Figure 3. Relation between the artificial intelligence search algorithms with the 144

software testing 145

3. Results 146

 3.1 EVOLUTIONARY TEST DATA GENERATION TECHNIQUES 147

Recently, several approaches applied in order to automate the process of test data 148

generation. An exhaustive description for the current techniques can be found in the 149

works [20]. From one hand, our concentration in this work will be on the techniques, 150

which consider the metaheuristic search algorithm to generate optimal set of test data in 151

order to maximize structural code coverage. On the other hand, there are some classifica- 152

tions of the most widely applied according to objective functions used. In general, test 153

generation techniques can be categorized into static and dynamic structural test data gen- 154

eration [21]. Figure 4 depicts the categorization of evolutionary structural test generation 155

techniques. 156

 157

5.1 Coverage-Oriented-Approach 158

In this approach, the idea is rewarding the solution according to the covered struc- 159

tures of the software under test. In [22], introduced this approach by rewarding the in- 160

dividuals which covering biggest number of program structures, which selected as cov- 161

erage criterion. In addition, attempt to achieve full path coverage by penalizes the solu- 162

tions that follow the path that already covered in order to cover the path uncovered yet. 163

EJEEE 2023, Vol.1 28 of 31

This approach is not always efficient because it is lack for guidance because where, there 164

is no guarantee to cover the structures, which not covered by chance [21]. 165

a. Structure Oriented 166

With structure-oriented approaches, the main idea behind these approaches is to be 167

dealing with the program structures required to cover in separates in order to obtain full 168

coverage. The search separated for each uncovered structure independently. Based on the 169

information utilized in this approach to guide the search through the objective function, 170

the approach can be classified into branch-distance-oriented and control-oriented. 171

 172
Figure 4. Evolutionary Structural Test Data Generation Techniques Classification 173

 174

b. Branch-Distance-Oriented 175

 According to the information of branch predicates, objective function guides the 176

search in order to generate set of data cover the branches uncovered yet. Where, the ob- 177

jective function value show how the input far from the required value which make the 178

branch predicate true or false according to test goals. Branch distance objective function 179

example for the branch predicate if (a<b) can be calculated by rearranging this predicate 180

into another mathematic form (b-a). The work of [23] applied branch distance function in 181

order to generate test data for testing software program and later many works follow the 182

same method. The paper [24] gives explanation of similar works. 183

c. Control-oriented-Approach 184

In this approach, the objective function takes into consideration the execution of 185

branching nodes. Branching nodes execution will executed in way that can led to execute 186

the desired structures. The idea her is to generate set of data can exercise the nodes which 187

control the structures which tester want to test. This approach applied in loop and branch- 188

ing nodes in the work [25]. 189

d. Combined Control and Branch Distance 190

In this approach, the branch distance and the control information will be considering 191

to the fitness function. In this approach, the control nodes determining the target structure 192

are identified. The generated solution then selects one of the branch predicates in the crit- 193

ical branch, and the distance function is computed accordingly. The work of [26] used the 194

objective function combined from the control nodes and branch distance to evaluate the 195

generated test data. 196

5. Conclusions 197

Search-based software testing is a notable instance within the broader domain of 198

search-based software engineering, representing a significant and crucial research area. In 199

this paper, research roadmap introduced in order to guide the researchers and students 200

in the search-based software testing research field. In the paper, essential terms and tech- 201

niques highlighted to explain the main meaning of using the search algorithm in software 202

EJEEE 2023, Vol.1 29 of 31

testing activities. In the future work, we tend to be more specific in covering the research 203

work on the structural software testing through explaining the main techniques used, the 204

objective function and the components of the software need test. 205
 206

Conflicts of Interest: “The authors declare no conflict of interest.” 207

 208

EJEEE 2023, Vol.1 30 of 31

References 209

1. Aguilar-Ruiz, J.S., et al., An evolutionary approach to estimating software development projects. Information and Software 210

Technology, 2001. 43(14): p. 875-882. 211

2. Harman, M. and B.F. Jones, Search-based software engineering. Information and software Technology, 2001. 43(14): p. 833-839. 212

3. Harman, M., S.A. Mansouri, and Y. Zhang, Search-based software engineering: Trends, techniques and applications. ACM 213

Computing Surveys (CSUR), 2012. 45(1): p. 1-61. 214

4. Akhtar, M.F., K. Ali, and S. Sadaqat, Factors influencing the profitability of Islamic banks of Pakistan. International research 215

journal of finance and economics, 2011. 66(66): p. 1-8. 216

5. Bagnall, A.J., V.J. Rayward-Smith, and I.M. Whittley, The next release problem. Information and software technology, 2001. 217

43(14): p. 883-890. 218

6. Kirsopp, C., M.J. Shepperd, and J. Hart, Search heuristics, case-based reasoning and software project effort prediction. 2002. 219

7. Mitchell, B.S. and S. Mancoridis, On the evaluation of the bunch search-based software modularization algorithm. Soft Computing, 220

2008. 12: p. 77-93. 221

8. Canfora, G., et al. An approach for QoS-aware service composition based on genetic algorithms. in Proceedings of the 7th annual 222

conference on Genetic and evolutionary computation. 2005. 223

9. Cohen, J.A., A.P. Mannarino, and V.R. Staron, A pilot study of modified cognitive-behavioral therapy for childhood traumatic grief 224

(CBT-CTG). Journal of the American Academy of Child & Adolescent Psychiatry, 2006. 45(12): p. 1465-1473. 225

10. Mitchison, H.M., et al., Targeted disruption of the Cln3 gene provides a mouse model for Batten disease. Neurobiology of disease, 226

1999. 6(5): p. 321-334. 227

11. Harman, G., Prince of networks: Bruno Latour and metaphysics. 2009: re. press. 228

12. Vogel, T., C. Tran, and L. Grunske, A comprehensive empirical evaluation of generating test suites for mobile applications with 229

diversity. Information and Software Technology, 2021. 130: p. 106436. 230

13. Anand, A., et al., Knowledge sharing, knowledge transfer and SMEs: evolution, antecedents, outcomes and directions. Personnel 231

review, 2021. 50(9): p. 1873-1893. 232

14. Shioda, S., Coupon subset collection problem with quotas. Methodology and Computing in Applied Probability, 2021. 23(4): p. 233

1203-1235. 234

15. Feldt, R. and S. Yoo. Flexible probabilistic modeling for search based test data generation. in Proceedings of the IEEE/ACM 42nd 235

International Conference on Software Engineering Workshops. 2020. 236

16. Sarro, K.J., et al., Seasonal variation of strength and power magnitude and asymmetry, and injury profile of Brazilian jiu-jitsu athletes. 237

Journal of Physical Education and Sport, 2022. 22(6): p. 1346-1355. 238

17. Parry, O., et al. Flake it'till you make it: Using automated repair to induce and fix latent test flakiness. in Proceedings of the IEEE/ACM 239

42nd International Conference on Software Engineering Workshops. 2020. 240

18. Binkley, D., et al. An Investigation into the Effect of Control and Data Dependence Paths on Predicate Testability. in 2020 IEEE 20th 241

International Working Conference on Source Code Analysis and Manipulation (SCAM). 2020. IEEE. 242

19. Dąbrowski, P., et al., Photosynthetic efficiency of Microcystis ssp. under salt stress. Environmental and Experimental Botany, 243

2021. 186: p. 104459. 244

20. Anand, S., et al., An orchestrated survey of methodologies for automated software test case generation. Journal of systems and 245

software, 2013. 86(8): p. 1978-2001. 246

21. McMinn, P., Search‐based software test data generation: a survey. Software testing, Verification and reliability, 2004. 14(2): p. 247

105-156. 248

22. Roper, S., Product innovation and small business growth: a comparison of the strategies of German, UK and Irish companies. Small 249

Business Economics, 1997. 9: p. 523-537. 250

EJEEE 2023, Vol.1 31 of 31

23. Miller, W. and D.L. Spooner, Automatic generation of floating-point test data. IEEE Transactions on Software Engineering, 251

1976(3): p. 223-226. 252

24. McMinn, P. Search-based software testing: Past, present and future. in 2011 IEEE Fourth International Conference on Software 253

Testing, Verification and Validation Workshops. 2011. IEEE. 254

25. Pargas, R.P., M.J. Harrold, and R.R. Peck, Test‐data generation using genetic algorithms. Software testing, verification and 255

reliability, 1999. 9(4): p. 263-282. 256

26. Tracey, I., et al., Imaging attentional modulation of pain in the periaqueductal gray in humans. Journal of Neuroscience, 2002. 22(7): 257

p. 2748-2752. 258

 259

